История развития генетики. Русский ученый генетик Ученые генетики и их достижения


Стало известно, что ученые из Университета Калифорнии в Сан-Франциско нашли ген, который отвечает за интеллект. А это позволит в будущем искусственно увеличивать разум человека в любом возрасте. И это лишь одно из множества последних открытий в генетике , каждое из которых имеет важнейшее значение для науки и Человечества.

Ген интеллекта

Как уже упоминалось выше, американские ученые из Калифорнии обнаружили белок с названием «клото» и ген KL-VS, который отвечает за его выработку. Последний тут же получил имя «ген интеллекта», ведь данный белок способен повысить показатели IQ человека сразу на 6 пунктов.

Более того, этот белок можно синтезировать искусственно, и не важно, какого возраста человек. Следовательно, в будущем ученые научатся научными методами делать людей умнее вне зависимости от их природных интеллектуальных данных.



Конечно, при помощи «клото» невозможно сделать из обычного человека гения. Но помочь людям с задержками интеллектуального развития, а также тем, кто страдает от болезни Альцгеймера, в будущем, возможно, и получится.

Болезнь Альцгеймера

Кстати, о болезни Альцгеймера. С момента ее описания в 1906 году ученые не могли достоверно выяснить природу данного заболевания, по каким причинам оно развивается у одних людей, а у других – нет. Но недавно появился существенный прорыв в изучении этой проблемы. Японские исследователи из Университета Осака обнаружили ген, который развивает болезнь Альцгеймера у подопытных мышей.

В рамках исследований был выявлен ген klc1, способствующий накоплению в тканях мозга бета-амилоидного белка, который и является основным фактором развития болезни Альцгеймера. Механизм этого процесса был известен давно, но раньше никто не мог объяснить его причину.



Опыты показали, что при блокировке гена klc1, количество скапливающегося в головном мозге бета-амилоидного белка снижается на 45%. Ученые надеются, что в будущем их исследования помогут в борьбе с болезнью Альцгеймера – опасным заболеванием, которым страдают десятки миллионов пожилых людей по всему миру.

Ген глупости

Оказывается, существует не только ген интеллекта, но и ген глупости. Во всяком случае, так считают ученые из Университета Эмори в Техасе. Они обнаружили генетическое отклонение RGS14, отключение которого позволяет заметно улучшить интеллектуальные способности подопытных мышей.

Выяснилось, что блокировка гена RGS14 делает более активной область CA2 в гиппокампе – области мозга, отвечающей за накопление новых знаний и сохранение воспоминаний. без этой генетической мутации стали лучше запоминать объекты и перемещаться по лабиринту, а также лучше адаптироваться к изменяющимся условиям внешней среды.



Ученые из Техаса надеются в будущем разработать препарат, который блокировал бы ген RGS14 у уже живущего человека. Это позволило бы дать людям невиданные ранее интеллектуальные возможности и познавательные способности. Но до реализации данной идеи нужно еще не одно десятилетие.

Ген ожирения

Оказывается, у ожирения также есть генетические причины. В разные годы ученые находили разные гены, способствующие появлению лишнего веса и большого количества жира в организме. Но «главным» из них на данный момент считается IRX3.



Выяснилось, что этот ген влияет на процент жира относительно общей массы. Во время лабораторных исследований, оказалось, что у мышей с поврежденным IRX3 процент жира в организме в два раза меньше, чем у остальных. И это притом, что их кормили одинаковым количеством высококалорийной пищи.



Дальнейшее изучение генетической мутации IRX3, а также механизмов ее воздействия на организм позволит создавать эффективные лекарства от ожирения и диабета.

Ген счастья

И главное, на наш взгляд, открытие генетиков из всех упомянутых в этом обзоре. Обнаруженный учеными из Лондонской школы здоровья, 5-HTTLPR называют «геном счастья». Ведь, оказывается, он отвечает за распространение гормона серотонин в нервных клетках.

Считается, что серотонин является одним из важнейших факторов, отвечающих за настроение человека, он заставляет нас радоваться или грустить, в зависимости от внешних условий. Те, у кого низкий уровень этого гормона, подвержены частым приступам плохого настроения и депрессий, склонны к тревожности и пессимизму.



Британские ученые выяснили, что так называемая «длинная» вариация гена 5-HTTLPR способствует лучшей доставке серотонина в головной мозг, что заставляет человека чувствовать себя в два раза счастливее, чем остальные. Эти выводы основаны на опросе и изучении генетических особенностей нескольких тысяч добровольцев. При этом самые лучшие показатели довольства жизнью оказались у тех людей, оба родителя которых также обладают «геном счастья».

Если не считать опытов по гибридизации растений в XVIII в., первые работы по генетике в России были начаты в начале XX в. как на опытных сельскохозяйственных станциях, так и в среде университетских биологов, преимущественно тех, кто занимался экспериментальной ботаникой и зоологией. После революции и гражданской войны 1917-1922 гг. началось стремительное организационное развитие науки. Генетика человека на этапе ее становления обозначалась в нашей стране в духе времени – евгеникой. Обсуждение возможностей евгеники, совпавшее по времени со стартом и быстрым развитием генетических исследований в России, опиралось на традиции русской медицины и биологии. Это обстоятельство сделало русское евгеническое движение уникальным: его деятельность, направляемая Н.К. Кольцовым и Ю.А. Филипченко, строилась вокруг исследовательской программы Ф. Гальтона, целью которой было раскрытие фактов наследственности человека и относительной роли наследственности и среды в развитии различных признаков. Н.К. Кольцов, Ю.А. Филипченко и их последователи занимались обсуждением проблем генетики человека и медицинской генетики, включая популяционный аспект проблемы. Благодаря этим особенностям русского евгенического движения, в 30-х годах был создан прочный фундамент медицинской генетики.

К концу 1930-х годов в СССР была создана обширная сеть научно-исследовательских институтов и опытных станций (как в Академии наук СССР, так и во Всесоюзной академии сельскохозяйственных наук имени Ленина (ВАСХНИЛ)), а также вузовских кафедр генетики. Важным шагом к оформлению генетики как автономной области исследований явилось решение целого ряда просветительских задач и образования весной 1928 г. Общества по изучению расовой патологии и географического распределения болезней. Новое общество, обладая широким кругом интересов, представляло собой эскиз будущего Медико-генетического института. Его основал некоторое время спустя Соломон Григорьевич Левит (1894–1938). В 1930 г. кабинет был расширен до Генетического отделения при Медико-биологическом институте (МБИ). Левит стал директором института и переориентировал его на генетику человека. Медико-биологический институт с осени 1932 г. (после 8-месячного перерыва) снова "сосредоточился на разработке проблем биологии, патологии и психологии человека путем применения новейших достижений генетики и смежных дисциплин (цитологии, механики развития, эволюционного учения). Основные работы института пошли по трем руслам: клинико-генетическому, близнецовому и цитологическому.

Признанными лидерами направления были Н. И. Вавилов, Н. К. Кольцов, А С. Серебровский, С. С. Четвериков и др. В СССР издавали переводы трудов иностранных генетиков, в том числе Т. Моргана, Г. Мёллера, ряд генетиков участвовали в международных программах научного обмена. Американский генетик Г. Мёллер работал в СССР (1934-1937), советские генетики работали за границей. Н.В. Тимофеев-Ресовский - в Германии (с 1925 г.), Ф.Г. Добржанский - в США (с 1927г.).

Среди работ отечественных ученых, опубликованных в этот период, следует отметить монографию Левита "Проблема доминантности у человека". В ней был доказан факт резкой фенотипической вариабельности большинства патологических мутантных генов человека. Левит пришел к выводу, что патологические гены человека являются, в своем большинстве, условно доминантными и отличаются низким проявлением в гетерозиготе. Этот вывод Левита противоречил теории эволюции Фишера, согласно которой вновь возникающие мутантные гены рецессивны. Однако в свете работ школы С.С.Четверикова и С.Н.Давиденкова 20-х и 30-х гг. следует признать гипотезу Левита более адекватной. Сотрудники МБИ перевели на русский язык пионерскую книгу Фишера "Генетическая теория естественного отбора", включавшую изложение его теории эволюции доминантности, но изъяли из перевода евгенические главы. К этому переводу проявлял интерес автор; материалы книги широко обсуждались и серьезно комментировались.

Большое значение МБИ придавал обследованию одно- и двуяйцовых близнецов. В конце 1933 г. было охвачено 600 пар близнецов, весной 1934 – 700 пар, а весной 1937 г. было 1700 пар (по размаху работ Институт Левита был на первом месте в мире). Близнецы изучались врачами всех специальностей; детям оказывалась необходимая медицинская помощь; при МБИ работал детский сад (на 7 пар близнецов, 1933 г.); по предложению С.Г.Левита, в консерватории училось пять пар близнецов (с целью выяснения эффективных методов обучения). К 1933 г. применение близнецового метода дало результаты в выяснении роли наследственности и среды в физиологии и патологии ребенка, в изменчивости электрокардиограммы, некоторых психических признаков и т.д. Другой круг вопросов касался корреляций различных функций и признаков организма; третий был посвящен выяснению сравнительной эффективности различных способов обучения и целесообразности того или иного воздействия. Н.С.Четвериков и М.В.Игнатьев занимались разработкой вариационно-статистических методов для интерпретации получаемых данных. Была предпринята попытка точного количественного учета роли факторов наследственности и воздействия среды, как создающих внутрисемейную корреляцию, так и не создающих ее. Все это имело важные теоретические и практические последствия.

Среди конкретных работ МБИ было замечательное теоретическое исследование В.П. Эфроимсона 1932 г. Анализируя равновесие между накоплением мутаций и интенсивностью отбора, он рассчитал темп мутационного процесса у человека. Вскоре В.П.Эфроимсон был арестован по политическому обвинению, а в 1933 г. осужден ОГПУ по ст. 58-1 на три года ИТЛ. Через отца он передал из тюрьмы текст для зачтения на семинаре. Статья не была опубликована. Затем Холдейн независимо сделал аналогичную работу. С.Г. Левит и другие докладчики, каждый из которых внес оригинальный вклад в общее дело, определили предмет новой автономной области исследований. 15 мая 1934 г. новая наука получила легитимное наименование: "медицинская генетика".

В 1930-е гг. в рядах генетиков и селекционеров наметился раскол, связанный с энергичной деятельностью Т.Д. Лысенко. По инициативе генетиков был проведён ряд дискуссий (наиболее крупные - в 1936 и 1939 г.), направленных на борьбу с подходом Лысенко. На рубеже 1930-1940-х гг. ряд видных генетиков были арестованы, многие расстреляны или погибли в тюрьмах, в том числе, Н. И. Вавилов - выдающийся отечественный биолог и автор современной теории селекции; разработал учение о центрах происхождения культурных растений; сформулировавший закон гомологических рядов; разработавший учение о виде как системе.

В 1948 году на августовской сессии ВАСХНИЛТ. Д. Лысенко, пользуясь поддержкой И.В. Сталина, объявил генетику лженаукой. Лысенко воспользовался некомпетентностью партийного руководства в науке, "пообещав партии" быстрое создание новых высокопродуктивных сортов зерна ("ветвистая пшеница") и др. С этого момента начался период гонений на генетику, который получил название "лысенковщины" и продолжался вплоть до снятия Н.С. Хрущева с поста генерального секретаря ЦК КПСС в 1964 г. Лично Т.Д. Лысенко и его сторонники получили контроль над институтами отделения биологии АН СССР, ВАСХНИЛ и вузовскими кафедрами. Были изданы новые учебники для школ и вузов, написанные с позиций "Мичуринской биологии". Генетики вынуждены были оставить научную деятельность или радикально изменить профиль работы. Некоторым удалось продолжить исследования по генетике в рамках программ по изучению радиационной и химической опасности за пределами организаций, подконтрольных Т.Д. Лысенко и его сторонникам.

После открытия и расшифровки структуры ДНК, физической базы генов (1953 г.), с середины 1960-х г. началось восстановление генетики. Министр просвещения РСФСР В.Н. Столетов инициировал широкую дискуссию между лысенковцами и генетиками, в результате было опубликовано много новых работ по генетике. В 1963 г. вышел в свет университетский учебник М.Е. Лобашёва "Генетика", выдержавший впоследствии несколько изданий. Вскоре появился и новый школьный учебник "Общая биология" под редакцией Ю. И. Полянского, используемый, наряду с другими, и по сей день. В 1964 г., еще до снятия запрета на генетику, вышел в свет первый современный отечественный учебник Эфроимсона "Введение в медицинскую генетику". В 1969 г. был организован Институт медицинской генетики АМН СССР, ядро которого составили сотрудники отдела Н.В. Тимофеева-Ресовского и лабораторий Прокофьевой-Бельговской и Эфроимсона. Возник своего рода преемник Медико-генетического института. При организации нового ИМГ планировалось создание специального журнала, однако замысел не был осуществлен. Первый с 30-х годов журнал, посвященный изучению человека ("Человек"), был создан в 1990 г. при Институте человека АН СССР.

Таким образом, отечественные исследователи внесли значительный вклад в развитие такого раздела биологии как генетика. Этот вклад мог бы быть еще более весомым, если бы им были созданы столь же благоприятные условия для разработки собственных оригинальных идей, как и зарубежным генетикам Видимо в этим кроется одна из причин того, что современная российская генетика значительно отстала в своем развитии от западной науки.



Хотя история генетики началась в XIX веке, еще древние люди замечали, что животные и растения передают в ряду поколений свои признаки. Другими словами, было очевидно, что в природе существует наследственность. При этом отдельные признаки могут изменяться. То есть помимо наследственности в природе существует изменчивость. Наследственность и изменчивость относятся к основным свойствам живой материи. Долгое время (до XIX-XX веков) истинная причина их существования была скрыта от человека. Это порождало ряд гипотез, которые можно разделить на два типа: прямое наследование и непрямое наследование.

Приверженцы прямого наследования (Гиппократ, Ламарк, Дарвин и др.) предполагали, что дочернему организму через определенные субстанции (геммулы по Дарвину), собирающиеся в половых продуктах, передается информация от каждого органа и каждой части тела родительского организма. По Ламарку следовало, что повреждение или сильное развитие органа напрямую передастся следующему поколению. Гипотезы непрямого наследования (Аристотель в IV в. до н. э., Вейсман в XIX в.) утверждали, что половые продукты образуются в организме отдельно и «не знают» об изменениях в органах тела.

В любом случае обе гипотезы искали «субстрат» наследственности и изменчивости.

История генетики как науки началась с работ Грегора Менделя (1822-1884), который в 60-х годах провел систематические и многочисленные опыты над горохом, установил ряд закономерностей наследственности, впервые высказал предположения об организации наследственного материала. Правильный выбор объекта исследования, изучаемых признаков, а также научная удача позволили ему сформулировать три закона:

Мендель понял, что наследственный материал дискретен, представлен отдельными задатками, передающимися потомству. При этом каждый задаток отвечает за развитие определенного признака организма. Признак обеспечивается парой задатков, пришедших с половыми клетками от обоих родителей.

В то время научному открытию Менделя не придали особого значения. Его законы были переоткрыты в начале XX века несколькими учеными на разных растениях и животных.

В 80-х годах XIX века были описаны митоз и мейоз, в ходе которых между дочерними клетками закономерно распределяются хромосомы. В начале XX века Т. Бовери и У. Сеттон пришли к выводу, что преемственность свойств в ряду поколений организмов определяется преемственностью их хромосом . То есть к этому периоду времени научный мир понял, в каких структурах заключается «субстрат» наследственности.

У. Бэтсоном был открыт закон чистоты гамет , а наука о наследственности и изменчивости впервые в истории была названа им генетикой . В. Иогансен ввел в науку понятия (1909 г.) , генотипа и фенотипа . В то время ученые уже поняли, что ген представляет собой элементарный наследственный фактор . Но его химическая природа еще не была известна.

В 1906 году было открытоявление сцепления генов , в том числе наследование признаков, сцепленное с полом . Понятие генотипа подчеркивало, что гены организма не просто набор независимых единиц наследственности, они образуют систему, в которой наблюдаются определенные зависимости.

Параллельно с изучением наследственности происходили открытия закономерностей изменчивости. В 1901 году де Фризом были заложены основы учения о мутационной изменчивости, связанной с возникновением изменений в хромосомах, что приводит к возникновению изменений признаков. Чуть позже было обнаружено, что часто возникают при воздействии радиации, определенных химических веществ и др. Таким образом было доказано, что хромосомы являются не только «субстратом» наследственности, но также изменчивости.

В 1910 году, во многом обобщая более ранние открытия, группой Т. Моргана была разработана хромосомная теория :

    Гены находятся в хромосомах и расположены там линейно.

    У каждой хромосомы есть гомологичная ей.

    От каждого из родителей потомок получает по одной из каждых гомологичных хромосом.

    Гомологичные хромосомы содержат одинаковый набор генов, но аллели генов могут быть разными.

    Гены, находящиеся в одной хромосоме, наследуются совместно () при условии их близкого расположения.

Среди прочего в начале XX века была обнаружена внехромосомная, или цитоплазматическая, наследственность, связанная с митохондриями и хлоропластами.

Химический анализ хромосом показал, что они состоят из белков и нуклеиновых кислот. В первой половине XX века многие ученые склонялись к мнению, что белки являются носителями наследственности и изменчивости.

В 40-х годах XX века в истории генетики происходит скачок. Исследования переходят на молекулярный уровень.

В 1944 году обнаруживается, что за наследственные признаки отвечает такое вещество клетки как . ДНК признается носителем генетической информации. Чуть позже было сформулировано, что один ген кодирует один полипептид .

В 1953 г. Д. Уотсон и Ф. Крик расшифровали структуру ДНК. Оказалось что это двойная спираль, состоящая из нуклеотидов . Ими была создана пространственная модель молекулы ДНК.

Позже были открыты следующие свойства (60-е годы):

    Каждая аминокислота полипептида кодируется триплетом (тремя азотистыми основаниями в ДНК).

    Каждую аминокислоту кодирует один триплет или более.

    Триплеты не перекрываются.

    Считывание начинается со стартового триплета.

    В ДНК нет «знаков препинания».

В 70-х годах в истории генетики происходит еще один качественный скачок – развитие генной инженерии . Ученые начинают синтезировать гены, изменять геномы . В это время активно изучаются молекулярные механизмы, лежащие в основе различных физиологических процессов .

В 90-х годах секвенируются геномы (расшифровывается последовательность нуклеотидов в ДНК) многих организмов. В 2003 году был завершен проект по секвенированию генома человека. В настоящее время существуют геномные базы данных . Это дает возможность комплексно исследовать физиологические особенности, заболевания человека и других организмов, а также определять родственную связь между видами. Последнее позволило систематике живых организмов выйти на новый уровень.

История развития генетики

Предмет генетики

По признанию многих современных биологов генетика в последние годы стала сердцевиной всей биологической науки. Лишь в рамках генетики разнообразие жизненных форм и процессов может быть осмыслено как единое целое.

Таким образом, генетика – наука о наследственности и ее реализации в развитии, о закономерностях наследования генетически закрепленных признаков. Наследственность можно определить как биологический процесс, обуславливающий сходство между родителями и потомством.. В понятие наследственности по М.Е.Лобашеву входят четыре группы явлений: организация генетического материала, его экспрессия, воспроизведение (репликация) и передача от одного поколения к другому. Таким образом, генетика объединяет в одно целое эмбриологию и биологию развития, морфологию и физиологию, объединяет в единую науку – биологию.

Другой проблемой генетики является проблемы изменчивости общего для любого конкретного вида генотипа.

Очень велико и практическое значение генетики, т.к. она служит теоретической основой селекции полезных микроорганизмов, культурных растений и домашних животных.

Из генетики выросли такие мощно развивающиеся науки как биотехнология, генная инженерия, молекулярная биология. Трудно переоценить роль генетики в развитии медицины. Основными разделами современной генетики являются: цитогенетика, молекулярная генетика, мутагенез, популяционная, эволюционная и экологическая генетика, физиологическая генетика, генетика индивидуального развития, генетика поведения и др. Разделами частной генетики: генетика микроорганизмов, генетика растений, генетика животных, генетика человека.

2. Краткая история развития представлений о наследственности

Фактически вплоть до начала 20 века гипотезы о механизмах наследственности имели умозрительный характер. Первые идеи о механизмах наследственности высказывали древние греки уже к V веку до н.э., в первую очередь Гиппократ . По его мнению, половые задатки (т.е. в нашем понимании яйцеклетки и сперматозоиды), участвующие в оплодотворении, формируются при участии всех частей организма, в результате чего признаки родителей непосредственно передаются потомкам, причем здоровые органы поставляют здоровый репродуктивный материал, а нездоровые – нездоровый. Это теория прямого наследования признаков.

Аристотель (IV в до н.э.) высказывал несколько иную точку зрения: он полагал, что половые задатки, участвующие в оплодотворении, производятся не напрямую из соответствующих органов, а из питательных веществ, необходимых

для этих органов. Это теория непрямого наследования.

Много лет спустя, на рубеже 18-19 веков, автор теории эволюции
Ж.-Б. Ламарк использовал представления Гиппократа для построения своей теории передачи потомству новых признаков, приобретенных в течение жизни.

Теория пангенезиса, выдвинутая Ч. Дарвином в 1868 году также базируется на идее Гиппократа. По мнению Дарвина, от всех клеток
организма отделяются мельчайшие частицы - "геммулы", которые,
циркулируя с током крови по сосудистой системе организма, достигают половых
клеток. Затем, после слияния этих клеток, в ходе развития организма следующего
поколения геммулы превращаются в клетки того типа, из которого произошли,
со всеми особенностями, приобретенными в течение жизни родителей.
Отражением представлений о передаче наследственности через "кровь" является существование во многих языках выражений: "голубая кровь", "аристократическая кровь", "полукровка" и т.д.

В 1871 году английский врач Ф. Гальтон (F. Galton), двоюродный брат
Ч. Дарвина опроверг своего великого родственника.
Он переливал кровь черных кроликов белым, а затем скрещивал белых между собой. В трех поколениях он "не нашел ни малейшего следа какого-либо нарушения чистоты серебристо белой породы". Эти данные показали, что по крайней мере в крови кроликов геммулы отсутствуют.

В 80-е годы 19-го века с теорией пангенезиса не согласился Август Вейсман
(A. Weismann). Он предложил свою гипотезу, согласно которой в организме существуют два типа клеток: соматические и особая наследственная субстанция, названная им "зародышевой плазмой", которая в полном объеме присутствует только в половых клетках.

Современная генетика – наука о наследственности и изменчивости организмов - в настоящее время проходит качественно новый этап своего развития, связанный с изучением молекулярных основ строения и функционирования генов и геномов, проблем генетической инженерии и ее использования в медицине, биологической промышленности, сельском хозяйстве и других направлениях науки и практики.

Историю генетики условно делят на три этапа. Первый этап классической генетики (1880 – 1930гг.), связанный с созданием теории дискретной наследственности (менделизм) и хромосомной теории наследственности (работы Моргана и его школы). Второй этап (1930 – 1953 гг.) – углубление принципов классической генетики и пересмотр ряда ее положений, исследования по мутационной изменчивости, доказательства сложного строения гена и генетической роли молекул дезоксирибонуклеиновой кислоты (ДНК) как материальной основы наследственности в клетке. Третий этап начинается с 1953 г., когда было описано строение ДНК и ее свойства, начаты и продолжаются работы по выделению ДНК и РНК и расшифровка генетического кода. В последние годы активно исследуются молекулярные основы строения и функционирования геномов, устанавливаются полные нуклеотидные последовательности геномов ряда организмов, в том числе человека, ведутся интенсивные исследования в области генетической инженерии. Подходы к современной генетике наметились в 18-ом и, особенно, в 19-ом веке. Растениеводы-практики, такие как
О. Сажрэ и Ш. Нодэн во Франции, А. Гершнер в Германии, Т. Найт в Англии обратили внимание на то, что в потомстве гибридов преобладают признаки одного из родителей. П. Люка во Франции сделал аналогичные наблюдения о наследовании различных признаков у человека.

Фактически всех их можно считать непосредственными предшественниками Менделя. Однако, только Мендель сумел глубоко продумать и провести спланированные эксперименты. Уже в первоначальной стадии работы он понял, что в эксперименте нужно выполнить два условия: растения должны обладать константно различающимися признаками и гибриды должны быть защищены от влияния чужой пыльцы. Таким условиям удовлетворял род Pisum (горох). Константность признаков была предварительно проверена в течение двух лет. Это были следующие признаки: "различия в длине и окраске стебля, в величине и форме листьев, в положении, окраске и величине цветков, в длине цветочных побегов, в окраске, форме и величине стручков, в форме и величине семян, в окраске семенной кожуры и белка". Часть из них оказались недостаточно контрастными и дальнейшую работу он с ними не проводил. Остались только 7 признаков. "Каждый из этих 7 признаков у гибрида или вполне тождественен с одним из двух отличительных признаков основных форм, так что другой ускользает от наблюдения, или же так похож на первый, что нельзя установить точного различия между ними". Признаки, "которые переходят в гибридные соединения совершенно неизменными... обозначены как доминирующие, а те, которые становятся при гибридизации латентными, как рецессивные". По наблюдениям Менделя "совершенно независимо от того, принадлежит ли доминирующий признак семенному или пыльцевому растению, гибридная форма остается в обоих случаях той же самой".

Таким образом, заслугой Менделя является то, что из непрерывной характеристики растений он выделил дискрентные признаки, выявил константность и контрастность их проявления, а также он ввел понятие доминантности и рецессивности. Все эти приемы впоследствии вошли в любой гибридологический анализ любого организма.

В результате скрещивания растений, обладающих двумя парами контрастных признаков, Мендель обнаружил, что каждый из них наследуется независимо от другого. Признаки эти контрастны и не теряются при гибридизации.

Работа Менделя не смогла заинтересовать современников и не повлияла на распространенные в конце 19-го века представления о наследственности.

Вторичное открытие законов Менделя в 1900 году Гуго де Фризом (Н. de Vries) в Голландии, Карлом Корренсом в Германии и Эрихом Чермаком в Австрии утвердили представления о существования дискретных наследственных факторов. Мир уже был готов к тому, чтобы воспринять новую генетику. Началось ее триумфальное шествие. Проверяли справедливость законов о наследовании по Менделю (менделировании) на все новых и новых растениях и животных и получали неизменные подтверждения. Все исключения из правил быстро развивались в новые явления общей теории наследственности.

В 1906 году англичанин Уильям Бэтсон (W. Bateson) предложил термин "генетика" (от латинского "geneticos" – относящийся к происхождению или "geneo" - порождаю, или "genos" – род, рождение, происхождение).

В 1909 году датчанин Вильгельм Иогансен (W. Iohanssen) предложил термины "ген", "генотип" и "фенотип".

Но уже вскоре после 1900 года встал вопрос, что такое ген и где он в клетке расположен? Еще в конце 19-го века Август Вейсман предположил, что постулированная им "зародышевая плазма" должна составлять материал хромосом. В 1903 году немецкий биолог Теодор Бовери (Т. Boveri) и студент Колумбийского Университета Уильям Сэттон (W. Sutton), работавший в лаборатории американского цитолога Е.Б. Вильсона, независимо друг от друга предположили, что общеизвестное поведение хромосом во время созревания половых клеток, а также при оплодотворении, позволяет объяснить характер расщепления наследственных единиц, постулированный теорией Менделя, т.е. по их мнению гены должны быть в хромосомах.

В 1906 году английские генетики У Бэтсон и Р. Пэннет в опытах с душистым горошком обнаружили явление сцепления наследственных признаков, а другой английский генетик Л. Донкастер тоже в 1906 году в опытах с бабочкой крыжовенной пяденицей открыл сцепленное с полом наследование. На первый взгляд и те, и другие данные явно не укладывались в менделевские законы наследования. Однако это противоречие легко устраняется, если представить, что происходит сцепление генов с одной из хромосом.

С 1910 года начинаются эксперименты группы Томаса Ханта Моргана (Т.Н. Morgan). Вместе со своими учениками Альфредом Стертевантом
(A. Sturtevant), Кальвином Бриджесом (С. Bridges) и Германом Меллером
(Н. Muller), ставшими вместе с Морганом основоположниками генетики, он к середине 20-х годов сформулировал хромосомную теорию наследственности, согласно которой гены расположены в хромосомах "как бусы на нити". Ими был определен порядок расположения и даже расстояния между генами. Именно Морган ввел в генетические исследования в качестве объекта маленькую плодовую мушку дрозофилу (
Drosophila melanogaster).

В 1929 году А.С. Серебровский и Н.П. Дубинин , еще не зная, что такое ген, на основании результатов собственных исследований пришли к выводу о его делимости.

Новый этап развития генетики начался в 1930-1940-е годы: Дж. Бидл (J. Beadle) и Э. Тэйтум (Е. Tatum) сделали заключение о том, что всякий ген определяет синтез одного фермента. Они предложили формулу: "Один ген – один фермент", или позднее, после уточнения: "один ген – один белок", или "один ген – один полипептид".

В 1944 году в результате работ по трансформации у бактерий О. Эвери, К. МакЛеод и М. МакКарти (О.Т. Avery, СМ. MacLeod, M. McCarty) показали что трансформирующим агентом у пневмококков является ДНК, а следовательно, именно этот компонент хромосом и является носителем наследственной информации.

Примерно в это же время было показано, что инфекционным элементом вирусов служит их нуклеиновая кислота.

В 1952 году – Дж. Ледерберг и М. Зиндер (J. Lederberg, M. Zinder) открыли явление трансдукции, т.е. переноса вирусами генов хозяина, показав тем самым роль ДНК в осуществлении наследственности.

Новый этап развития генетики начинается с момента расшифровки структуры ДНК Джеймсом Уотсоном и (J.D. Watson, род. 1928, F. Crick, род. 1916), которые обобщили данные рентгеноструктурного анализа, полученные Моррисом Уилкинсом и Розалинд Франклин.

Этот этап развития генетики богат выдающимися открытиями, особенно крупное было связано с расшифровкой генетического кода (С. Очоа и М. Ниренберг в США, Ф. Крик в Англии). А в 1969 году в США Г. Хорана с сотрудниками синтезировали химическим путем первый ген.

Достаточность знаний о механизмах наследственности привела к развитию новой науки – генетической инженерии. С использованием генно-инженерных приемов из многих живых организмов выделяют и изучают гены, переносят гены из одних организмов в другие.

В 1976 году была выделена и клонирована ДНК мобильных элементов генома (Г.П. Георгиев с сотрудникми в СССР, Д. Хогнесс (D. Hogness) с сотрудниками в США). С 1982 года, используя мобильные элементы генома в качестве вектора, содержащего тот или иной ген, начаты опыты по трансформации дрозофилы (Дж. Рубин, А. Спрадлинг, США).

Конец 1980-х - 1990-е годы характерны беспрецедентной активностью генетиков по расшифровке процессов развития, осуществляемого под контролем генов (Е. Lewis, С. Nusslein-Volhard, E. Wieshaus, W. Gehring,
A. Garcia-Bellido, D. Hogness).

Вклад ученых в развитие генетики

В СССР золотой век генетики начался вскоре после Октябрьской революции в 1917 году. В середине тридцатых годов, по мнению многих современных ученых, советская генетика несомненно стояла на втором месте в мире после США.

Наиболее крупной фигурой российской генетики был и надолго останется, Н.И. Вавилов, открывший параллельность наследственной изменчивости у растений (1922), и центры происхождения культурных растений (1927). Заслуги Вавилова еще при жизни были оценены современниками. Его имя было занесено на обложку основного в то время генетического журнала "Hered­ity" вместе с именами других крупнейших генетиков мира.

Н.К. Кольцов, глава московской школы генетиков, предложил в 1935 году гипотезу о матричном принципе репродукции гена и предложил идею, что все гены в хромосоме представляют одну гигантскую молекулу.

А.С.Серебровский и Н.П.Дубинин в 1929 году впервые продемонстрировали сложную организацию гена.

С.С. Четвериков в 1926 г. заложил основы экспериментальной генетики популяций. А.С. Серебровский (1940) предложил уникальный биологический метод борьбы с вредителями сельского хозяйства.

Ю.А. Филипченко за свою короткую жизнь сделал выдающийся вклад в генетику растений и домашних животных, Г.Д. Карпеченко впервые получил межродовые гибриды растений.

Г.А. Левитский был выдающимся цитогенетиком.

Г.А. Надсон и Г.С. Филиппов впервые в 1925 индуцировали мутации с помощью рентгеновских лучей.

Можно привести огромный список фамилий выдающихся ученых мирового уровня: Б.Л. Астауров, И.А. Раппопорт, А.А. Прокофьева-Бельговская, М.Л. Бельговский, П.Ф.Рокицкий, Н.В. Тимофеев-Ресовский, Ф.Г. Добжанский, Б. Эфрусси, М.Е. Лобашев, В.В. Сахаров. Многие выдающиеся зарубежные ученые работали в российских лабораториях того времени: У. Бэтсон, С. Харланд и К.Д. Дарлингтон из Англии, Э. Баур и Р. Гольдшмидт из Германии, К. Бриджес, Л. Дэнн и Г. Меллер из США,
Д. Костов из Болгарии.

Ситуация начала ухудшаться в конце 20-х годов, когда некоторые неоламаркисты стали активно защищать теорию наследования приобретенных в ходе жизни свойств организма. Эти неоламаркисты получили существенную помощь от группы философов-марксистов, таких как М.Б. Митин и П.Ф. Юдин, заявивших, что теория Ламарка соответствует основным постулатам диалектического материализма. Их оппоненты обвинялись в "идеализме", в том смысле, что они отрицают возможность влияния внешней среды на наследственность. Правительство сильно поддерживало ламаркистов, даже пригласило известного автрийского ламаркиста Пауля Камерера занять высокий пост в советской биологической науке. Многие генетики протестовали против данных П. Камерера (Н.К. Кольцов, А.С. Серебровский, Ю.А. Филипченко, М.Л. Левин, С.Г. Левит, С.С. Четвериков).

В свою очередь правительство критиковало этих ученых. В 1929 году, после самоубийства П. Камерера, узнавшего о разоблачении его научной подделки, С.С. Четвериков и его аспирант П.Ф. Рокицкий были арестованы. Четвериков был сослан на Урал, затем смог переехать во Владимир, потом в Горький, но в Москву путь ему был закрыт.

В середине 1930-х годов дискуссии вновь возобновились, но уже с участием быстро набирающего силу Т.Д. Лысенко. Т.Д. Лысенко базировался на следующих постулатах:

1. Он отрицал существование генов, объявляя их выдумкой буржуазных идеалистических ученых. Хромосомы, по его мнению, не имели никакого отношения к наследственности. Он отрицал законы Менделя, считая их "выдумкой католического монаха".

2. Лысенко безусловно принимал идею наследования приобретенных признаков и отрицал роль отбора в эволюции, который считал "ошибкой Дарвина".

3. Лысенко считал, что один вид внезапно, в результате скачка, может превратиться в другой, например, береза в ольху, овес – в пшеницу, кукушка – в пеночку.

Лысенко никогда не проверял свои идеи ни экспериментально, ни сравнивая с литературными данными. Он заявлял, что источником его знаний являются работы И.В. Мичурина и К. А. Тимирязева, а также "классиков марксизма". На основе этих "знаний" он предлагал рецепты быстрого улучшения сельского хозяйства в целом, быстрого выведения ценных сортов растений – в 2-3 года, в то время как методы, базирующиеся на основе законов Вейсмана-Менделя-Моргана, требуют 10-15 лет работы.

Сталин поддержал Лысенко. Началось его быстрое продвижение по карьерной лестнице: в 1934 – академик АН Украины, 1935 академик ВАСХНИЛ, в 1938 - президент этой Академии, 1939 - академик АН СССР. После ареста Вавилова, в 1940 году Лысенко стал директором института генетики АН СССР. С 1937 по 1966 год Лысенко – депутат Верховного Совета СССР и заместитель его председателя. Он лауреат государственной премии и не менее 8 раз кавалер ордена Ленина, в 1945 году стал Героем Социалистического Труда.

Правой рукой Лысенко был морально разложившийся тип –
И.И. Презент, бывший адвокат. Он давал "идеологически выверенные" объяснения биологических теорий Лысенко.

В конце 1936 и 1938 годах состоялись публичные дискуссии, организованные философом М.Б. Митиным – редактором журнала "Под знаменем марксизма". Сторону генетиков поддерживали будущий Нобелевский лауреат Г. Меллер, а также А.Р. Жебрак, Н.И. Вавилов и Н.П. Дубинин. Однако, уже на этом этапе научная сторона дискуссий не интересовала ни лысенковцев, ни поддерживавших их правителей СССР. Вскоре после последней дискуссии (в 1940 году) Вавилов был арестован и погиб в тюрьме гор. Саратова от истощения. Место его могилы неизвестно до сих пор.

В 1939 году злобная статья против Н.К. Кольцова появилась в "Правде". Затем была комиссия, включающая Лысенко, в возглавляемый
Н.К. Кольцовым Институт экспериментальной биологии (ныне Институт биологии развития РАН им. Н.К. Кольцова). На основании заключения комиссии Кольцов был снят с должности директора. Через несколько месяцев он умер от инфаркта миокарда. После ареста Вавилова пошла волна арестов среди других генетиков. В камерах пыток погибли Г.А. Левитский в возрасте 64 лет, Г.Д. Карпеченко в возрасте 43 лет, Г.К. Мейстер, другие генетики: Н.К. Беляев, С.Г. Левит, И. Агол, М. Левин.

Апофеозом могущества Лысенкостала печально знаменитая августовская
сессия ВАСХНИЛ 1948 года. Вся процедура этого заседания
была фарсом, специально подготовленным для расправы над генетикой. Заслуживают восхищения те из немногих генетиков, которые, зная, что это фарс, пошли и сказали свои последние слова в защиту генетики. Вот их имена: И.А. Рапопорт, М.М. Завадовский, СИ. Алиханян, И.А. Поляков, П.М. Жуковский, И.И. Шмальгаузен, А.Р. Жебрак, B.C. Немчинов.

Часть из них не выдержала, и к концу сессии они сломались, отступили от генетики, видимо после того как Лысенко заявил, что тов. Сталин прочитал и полностью одобрил его доклад о разгроме генетики. Все они потеряли работу, кроме И.А. Рапопорта, которого, как героя войны, оставили в покое.

Сразу после августовской сессии ВАСХНИЛ 1948 года были составлены списки, по которым множество ученых-генетиков были уволены из вузов и академических институтов. Из журналов вырывали страницы, где были статьи генетиков, в статьях вымарывали слова "ген", "генетика", "хромосома". Множество ученых были отправлены в ссылки.

Некоторым ученым, например, Дубинину, Лобашеву, Прокофьевой-Бельговской удалось выстоять, не отказываясь от своих убеждений, благодаря смене научной специализации; Дубинин несколько лет работал орнитологом, Лобашев – физиологом, Прокофьева-Бельговская микробиологом. А З.С. Никоро – пианисткой в кинотеатре.

После смерти Сталина началось медленное восстановление генетики. Стали появляться разрозненные публикации с критикой Лысенко. Сначала авторами были химики и физики, затем к ним присоединились биологи (Сукачев, Любищев, Медведев, Кирпичников).

Решающий перелом наступил в 1957 году. М.Е. Лобашев начал читать генетику в Ленинградском университете, в Новосибирске в этом же году
М.А. Лаврентьев решил основать Институт цитологии и генетики в структуре Сибирского отделения АН СССР. В Киевском университете генетику начал читать П.К. Шкварников с 1958 года. И.В. Курчатов организовал в своем суперсекретном Институте атомной энергии радиобиологический отдел (ныне Институт молекулярной генетики РАН). Тем не менее, вплоть до 1965 года нельзя было негативно упоминать сессию ВАСХНИЛ 1948 года, о преподавании генетики в ЛГУ, о строительстве Института в Новосибирске, о подготовке Лобашевым первого послевоенного учебника по генетике. Все это делалось на полулегальном уровне.

Более того, возникла новая "гениальная социалистическая идея": неграмотная пенсионерка О.Б. Лепешинская заявила, что клетки возникают не путем митотического деления по принципу Р. Вирхова «cellula e cellula», а непосредственно из "живого вещества" – например из протухшего яичного желтка. Принцип же Вирхова был объявлен "выдумкой буржуазного идеалиста". Лысенко с его шайкой поддержали Лепешинскую.

Другая "теория", поддержанная Лысенко, была предложена
Г.И. Бошьяном, полагавшим, что вирусы могут трансформироваться в бактерии и обратно.

Интересно сравнить то, что делалось в 1950-ые годы за рубежом и в России: расшифровка структуры ДНК и генетического кода там и средневековая охота на ведьм – тут. Как же получилось, что старушка-пенсионерка завладела "умами" "биологов" и правителей России? Не в последнюю очередь это и потому, что на стене Дома-на-набережной в Москве до сих пор висит мемориальная доска: "В этом доме жили... и О.Б. Лепешинская - соратники В.И. Ленина".

По свидетельству одного из активных последователей Лысенко и Лепешинской, А.Н. Студитского, сделанному несколько лет назад, "Лысенко задержал развитие генетики на 40 лет".

Федеральное агентство по образованию Российской Федерации

Государственное образовательное учреждение высшего профессионального образования

«Южно-Уральский государственный университет»

Факультет «Экономика и управление»

Кафедра «Экономика, управление и инвестиции»

История развития генетики. Вклад русских ученых

РЕФЕРАТ

по дисциплине «Концепции современного естествознания»

Проверил

О.М. Баева

студент группы ЭиУ-232

А.И. Кулешова

________________________2010г.

Реферат защищен

с оценкой

_____________________________

________________________2010г.

ВВЕДЕНИЕ

Генетика - наука о наследственности и её изменчивости – получила развитие в начале XX в., после того как исследователи обратили внимание на законы Г. Менделя, открытые в 1865 г., но остававшиеся без внимания в течение 35 лет. За короткий срок генетика выросла в разветвленную биологическую науку с широким кругом экспериментальных методов и направлений. Название генетика было предложено английским ученым У. Бэтсоном в 1906 г. Исследователями классического периода развития генетики были выяснены основные закономерности наследования и доказано, что наследственные факторы (гены) сосредоточены в хромосомах. Дальнейший прогресс в изучении закономерностей хранения и реализации генетической информации сдерживался по двум причинам. Во-первых, из-за слишком объемных экспериментов, связанных с более глубоким изучением генов, во-вторых, ввиду невозможности понять работу генов без углубленного исследования превращения молекул, вовлеченных в генетические процессы. Переход к генетическим исследованиям микроорганизмов, позволивший избегать многих трудностей, был вполне закономерен. Такой переход осуществился в 50-х годах. В 1941 г. Дж. Бидл и Э. Тейтум опубликовал короткую статью "Генетический контроль биохимических реакций у Neurospora ", в которой сообщили о первых генетических экспериментах на микроорганизмах.

В последние годы эти исследования получили широкий размах и проводятся на самых различных биологических объектах.

Задачей данного реферата является отражение наиболее важных открытий, сделанных русскими учеными в области генетики, их анализ и определение их значимости для науки.

Для раскрытия темы были взяты как научные труды, так и современные интернет-ресурсы, что должно дать проверенные данные и современную точку зрения на них.

1 РАЗВИТИЕ ГЕНЕТИКИ В РОССИИ

Если не считать опытов по гибридизации растений в XVIII в., первые работы по генетике в России были начаты в начале XX в. как на опытных сельскохозяйственных станциях, так и в среде университетских биологов, преимущественно тех, кто занимался экспериментальной ботаникой и зоологией.

После революции и гражданской войны 1917-1922 гг. началось стремительное организационное развитие науки. К концу 1930-х годов в СССР была создана обширная сеть научно-исследовательских институтов и опытных станций (как в Академии наук СССР, так и во Всесоюзной академии сельскохозяйственных наук имени Ленина (ВАСХНИЛ)), а также вузовских кафедр генетики. Признанными лидерами направления были Н. И. Вавилов, Н. К. Кольцов, А. С. Серебровский, С. С. Четвериков и др. В СССР издавали переводы трудов иностранных генетиков, в том числе Т. Х. Моргана, Г. Мёллера, ряд генетиков участвовали в международных программах научного обмена. Американский генетик Г. Мёллер работал в СССР (1934-1937), советские генетики работали за границей. Н. В. Тимофеев-Ресовский - в Германии (с 1925 г.), Ф. Г. Добржанский - в США (с 1927 г.).

В 1930-е гг. в рядах генетиков и селекционеров наметился раскол, связанный с энергичной деятельностью Т. Д. Лысенко и И. И. Презента. По инициативе генетиков был проведён ряд дискуссий (наиболее крупные - в 1936 и 1939 г.), направленных на борьбу с подходом Лысенко.

На рубеже 1930-1940-х гг. в ходе так называемого Большого террора большинство сотрудников аппарата ЦК ВКП (б), курировавших генетику, и ряд видных генетиков были арестованы, многие расстреляны или погибли в тюрьмах (в том числе, Н. И. Вавилов). После войны дебаты возобновились с новой силой. Генетики, опираясь на авторитет международного научного сообщества, снова попытались склонить чашу весов в свою сторону, однако с началом холодной войны ситуация значительно изменилась. В 1948 году на августовской сессии ВАСХНИЛ Т. Д. Лысенко, пользуясь поддержкой И. В. Сталина, объявил генетику лженаукой. Лысенко воспользовался некомпетентностью партийного руководства наукой, «пообещав партии» быстрое создание новых высокопродуктивных сортов зерна («ветвистая пшеница») и др. С этого момента начался период гонений на генетику, который получил название лысенковщины и продолжался вплоть до снятия Н. С. Хрущева с поста генерального секретаря ЦК КПСС в 1964 г.

Лично Т. Д. Лысенко и его сторонники получили контроль над институтами отделения биологии АН СССР, ВАСХНИЛ и вузовскими кафедрами. Были изданы новые учебники для школ и вузов, написанные с позиций «Мичуринской биологии». Генетики вынуждены были оставить научную деятельность или радикально изменить профиль работы. Некоторым удалось продолжить исследования по генетике в рамках программ по изучению радиационной и химической опасности за пределами организаций, подконтрольных Т. Д. Лысенко и его сторонникам.

После открытия и расшифровки структуры ДНК, физической базы генов (1953 г.), с середины 1960-х г. началось восстановление генетики. Министр просвещения РСФСР В. Н. Столетов инициировал широкую дискуссию между лысенковцами и генетиками, в результате было опубликовано много новых работ по генетике. В 1963 г. вышел в свет университетский учебник М. Е. Лобашева «Генетика», выдержавший впоследствии несколько изданий. Вскоре появился и новый школьный учебник Общая биология под редакцией Ю. И. Полянского, используемый, наряду с другими, и по сей день.

Вывод по разделу один

Развитие генетики в России шло сложным путем, претерпевая гонения со стороны властных структур, что значительно тормозило процесс развития данной науки.

2 НИКОЛАЙ ИВАНОВИЧ ВАВИЛОВ И ЕГО ВКЛАД В ГЕНЕТИКУ

Николай Иванович Вавилов (13 (25) ноября 1887, Москва, Российская империя - 26 января 1943, Саратов, РСФСР, СССР) - российский и советский учёный-генетик, ботаник, селекционер, географ, академик АН СССР, АН УССР и ВАСХНИЛ. Президент (1929-1935), вице-президент (1935-1940) ВАСХНИЛ, президент Всесоюзного географического общества (1931-1940), основатель (1920) и бессменный до момента ареста директор Всесоюзного института растениеводства (1930-1940), директор Института генетики АН СССР (1930-1940), член Экспедиционной комиссии АН СССР, член коллегии Наркомзема СССР, член президиума Всесоюзной ассоциации востоковедения. В 1926-1935 годах член Центрального исполнительного комитета СССР, в 1927-1929 - член Всероссийского Центрального Исполнительного Комитета.

Организатор и участник ботанико-агрономических экспедиций, охвативших большинство континентов (кроме Австралии и Антарктиды), в ходе которых выявил древние очаги формообразования культурных растений. Создал учение о мировых центрах происхождения культурных растений. Обосновал учение об иммунитете растений, открыл закон гомологических рядов в наследственной изменчивости организмов. Внёс существенный вклад в разработку учения о биологическом виде. Под руководством Вавилова была создана крупнейшая в мире коллекция семян культурных растений. Он заложил основы системы государственных испытаний сортов полевых культур. Сформулировал принципы деятельности главного научного центра страны по аграрным наукам, создал сеть научных учреждений в этой области.

Понравилась статья? Поделиться с друзьями: